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Abstract
We study the decoherence of superpositions of displaced quantum states of the
form

∑N
k=1 ckD̂(αk)|g〉 (where |g〉 is an arbitrary ‘fiducial’ state and D̂(α) is

the usual displacement operator) within the framework of the standard master
equation for a quantum damped or amplified harmonic oscillator interacting
with a phase-insensitive (thermal) reservoir. We compare two simple measures
of the degree of decoherence: the quantum purity and the height of the
central interference peak of the Wigner function. We show that for N > 2
‘mesoscopic’ components of the superposition, the decoherence process cannot
be characterized by a single decoherence time. Therefore, we distinguish
the ‘initial decoherence time’ and ‘final decoherence time’ and study their
dependence on the parameters αk and N. We obtain approximate formulae
for an arbitrary state |g〉 and explicit exact expressions in the special case of
|g〉 = |m〉, i.e., for (symmetrical) superpositions of displaced Fock states of
occupation number m. We show that the superposition with a large number
of components N and rich ‘internal structure’ (m ∼ |α|2) can be more robust
against decoherence than simple superpositions of two coherent states (with
m = 0), even if the initial decoherence times coincide. Also, we show how
initial pure quantum superpositions are transformed into highly mixed and
totally classical superpositions in the case of a phase-insensitive amplifier.

PACS numbers: 03.65.Yz, 42.50.Dv

1. Introduction

During more than two decades after the pioneering papers [1], different aspects of the
problem of decoherence of ‘macroscopic’ quantum superpositions (Schrödinger cat states)
were considered in numerous publications, references to which can be found in reviews [2–5].
Some theoretical predictions have already been verified in experiments performed by different
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groups [6–10] and new experimental proposals appeared recently [11–13]. Nonetheless, the
problem of decoherence continues to attract attention of many researchers, as can be seen,
e.g., from recent publications [14–21]. Moreover, this subject is still far from being exhausted,
because only the decoherence of the simplest superpositions of Gaussian packets (coherent or
squeezed states) has been studied in detail until now (for a few exceptions see, e.g., [22–24]).
In particular, one of the most frequently considered models of the Schrödinger cat states is
based on the notion of even and odd coherent states introduced in [25]. These states have
the form

|α〉± = N±(|α|)[D̂(α) ± D̂(−α)]|0〉, (1)

where N±(|α|) is the normalization factor, |0〉 is the vacuum state and

D̂(α) = exp(αâ† − α∗â) (2)

is the displacement operator. As was shown in [1, 2], the decoherence time for the
superposition (1) with |α|2 � 1 is inversely proportional to the square of the distance between
the components:

Tdecoh ∼ Trel/(2|α|2), (3)

where Trel is the relaxation time.
On the other hand, one of the aims of the decoherence theory is to understand why quantum

interference effects cease to be noticed in the world of macroscopic objects. In this connection
we would like to note that macroscopic objects are not only big, but they have many degrees of
freedom (as was emphasized in [3]) and possess rather rich internal structures. Consequently,
their superpositions can hardly be characterized by a single parameter, such as the distance
|α| between the centers of the components. Therefore, it seems interesting to study how the
presence of some kinds of ‘fine structures’ in the components of the superpositions, as well
as the number of such components (which can also be big), can influence the decoherence
processes.

Such studies not only have an academic interest, but also their results can be useful for
various applications, such as quantum information and computation, where the decoherence
plays a negative role. Usually, people try to diminish its influence either by replacing a thermal
environment with some engineered ones [17, 26–29] or by choosing special initial quantum
states [26, 30]. We consider here only the second way, supposing that the decoherence is
caused by a coupling with a usual thermal reservoir. But we shall demonstrate that certain
multicomponent superpositions with a specific ‘fine structure’ have a smaller decoherence rate
than simple superpositions of two coherent states of the same effective size.

We confine ourselves to a special family of quantum superpositions

|ψ〉 = A−1/2
N∑

k=1

ckD̂(αk)|g〉, (4)

where |g〉 is some ‘fiducial’ state, ck are constant complex coefficients and A is the
normalization factor. If |g〉 is the vacuum state |0〉 and N = 2, then (4) is a superposition of
two coherent states, whose properties are well known. Therefore, our first goal is to see what
can happen if one increases the number of components N. The second goal is to see what can
happen if one takes more involved fiducial states. For this purpose, we consider in detail the
case when |g〉 coincides with the Fock state |m〉 (where m is an arbitrary positive integer).
The states D̂(α)|m〉 are known nowadays under the name displaced number states. Their
properties were studied by many authors (who used sometimes other names) [31], and methods
of their generation and reconstruction were considered in [32] (different schemes of generating
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nonclassical states, including various ‘macroscopic superpositions’, were discussed, e.g., in
[33–45]; some of them were used and verified in experiments [6–8, 46]).

Superpositions of coherent states (m = 0) on a circle and methods of their generation
were studied in [47–57] (‘circular states’, αk = |α|exp(iφk)). Discrete superpositions of
coherent states on a straight line were investigated in [51, 58]; methods of their generation
were proposed in [59]. More general superpositions of coherent states were studied in [60, 61].
The decoherence of multiple superpositions of coherent states was considered in [62–64]. The
generation and amplification of displaced circular states were studied in [65]. Properties of
the superpositions (4) with m � 1 and ck = 1 were considered in [23, 66]. The problem of
decoherence of these states was considered in [23, 24], but only for small values of parameters
m and |α|. In contrast, we put emphasis on the case |α| � 1, because we are interested in the
problem of decoherence of ‘macroscopic’ superposition states.

The choice of superpositions in the form (4) and specifically with |g〉 = |m〉 is motivated
by two facts. First, such superpositions have a sufficiently rich structure, so they can be used
to model states with ‘internal degrees of freedom’. Second, these states are still simple enough
to allow for an analytical treatment. The decoherence of even and odd superpositions of two
displaced number states was considered recently in [67], where it was shown that increasing
the degree of excitation m for a fixed distance between the components |α| can result in
increasing the decoherence time, especially for m ∼ |α|2. In the present paper, we extend
those results by studying how an increase in the number of superposed states N influences the
decoherence time(s).

The plan of the paper is as follows. In section 2, we analyze the structure of the
Wigner functions of generic superpositions of many displaced copies of the same basic state
|g〉, emphasizing the role of the central interference peak, which is absent in the coordinate
probability density. The evolution of the initial pure superposition state (4), governed by
the standard master equations (which describes either the attenuation or phase-insensitive
amplification processes), is studied in section 3, where explicit expressions are obtained in
the special case |g〉 = |m〉. Different approaches to the definition of the ‘decoherence time’ are
considered in section 4, where we compare the time evolution of the ‘quantum purity’ and the
height of the central interference peak of the Wigner function. We also show that approximate
(but accurate enough in the case |αk| � 1) expressions for the height of the central peak can
be found for a rather arbitrary fiducial state |g〉. This is a serious argument in favor of using
the height of the central interference peak as a good indicator of decoherence. A comparison
of the dependence of the ‘initial’ and ‘final’ decoherence times on the parameters α, m
and N for superpositions of displaced number states on a straight line is made in section 5.
A transformation of initial quantum superpositions to classical ones in the case of phase-
insensitive amplification is demonstrated in section 6. Section 7 contains conclusions.

2. Wigner functions of superpositions of displaced states

If absolute values of differences between the displacement parameters αk −αj are big enough,
then the components of the superposition state (4) practically do not overlap. In such a
case, how one could see that the state concerned is not a classical mixture, but a quantum
superposition? The best way is to analyze, instead of the probability density |ψ(x)|2 in the
coordinate space, the Wigner function (we assume h̄ ≡ 1)

W(q, p) =
∫

dv eipv〈q − v/2|ρ̂|q + v/2〉, (5)



13958 V V Dodonov and L A de Souza

where 〈x|ρ̂|x ′〉 is the matrix element of the statistical operator ρ̂ in the coordinate basis. In
order to simplify formulae, we shall also use the function F(z) = π−1W(q, p) of the complex
argument z = (q + ip)/

√
2 (assuming the unit mass and frequency of the quantum oscillator

under consideration). Then the normalization conditions read∫
W(q, p) dq dp/(2π) =

∫
F(z) d2z = Tr ρ̂ = 1, (6)

with d2z ≡ dRe(z)d Im(z).
Suppose that the Wigner function Fg(z) of some arbitrary state |g〉 is known, then one

can verify that the Wigner function of the superposition state (4) has the form

Fψ(z) = A−1
N∑

j,k=1

cj c
∗
kFg

(
z − α

(+)
jk

)
exp

(
2i Im

[
2α

(−)
jk z∗ − α

(−)
jk α

(+)∗
jk

])
, (7)

where

α
(±)
jk = 1

2 (αj ± αk) = ±α
(±)
kj . (8)

Function (7) is real if the Wigner function Fg(z) is real. Each of the N2 terms in the sum (7)
has the same form as the Wigner function of the ‘fiducial’ state |g〉, but it is displaced by the
complex value α

(+)
jk in the phase plane and multiplied by a z-dependent phase factor (except for

the diagonal terms with j = k). The non-diagonal terms arise due to the quantum interference
(they do not appear for classical mixtures). These interference terms are the most pronounced
for an even number of components N, if all displacement parameters αk can be divided into
N/2 pairs (αk,−αk) with equal phases of amplitudes ck in each component of the pair, because
in such a case there exists a big interference peak at the central point z = 0. For this reason, we
shall study in detail the decoherence properties of this special family of superposition states,
assuming that

α2k−1 = −α2k, c2k−1 = c2k, 1 	 |α2| � |α4| � · · · � |αN | (9)

and |αk ± αj | � R (obviously, for k 
= j in the case of ‘minus’ sign), where R is an effective
size of the state |g〉 in the phase plane, so that |Fg(z)| 	 |Fg(0)| if |z| > R. Under these
conditions, we can write the normalization factor and the heights of the central interference
peak (at z = 0) and the ‘constituent’ peaks (at z = αk) as

A =
N∑

k=1

|ck|2, Fψ(0) = Fg(0), Fψ(αk) = Fg(0)|ck|2/A, (10)

with small corrections of the order of exp(−|αk ± αj |2). Consequently, in the case of equal
coefficients |ck|2, the height of the central interference peak is N times bigger than the heights
of the constituent ones.

The existence of the high central interference peak is the best manifestation of the
superposition nature of the quantum state. Moreover, the value of the Wigner function at
the origin can be measured, and it has a clear physical meaning [13, 68]. On the other
hand, the structure of the central peak is very sensitive to any perturbations of the quantum
state due to the presence of strongly oscillating terms with j 
= k in equation (7). For this
reason, studying the time evolution of the central part of the Wigner function one can obtain
the information on the decoherence of quantum superpositions in the most simplest way (see
also [69, 70]).

In the case of the fiducial Fock state |m〉, one should put in equation (7) the function [71]

Fm(z) = (2/π)(−1)m exp(−2|z|2)Lm(4|z|2), (11)
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Figure 1. Left: the function f (x) = exp(−2x)Lm(4x) with m = 30 versus the function exp(−2x)

(the upper line) in the interval x < 2. Right: the same function in the interval x > 1.

where Lm(x) ≡ L(0)
m (x) is the Laguerre polynomial defined according to [72]

L(k)
m (z) =

m∑
n=0

(m + k)!

(m − n)!n!(k + n)!
(−z)n. (12)

The combination of (7) and (11) results in a generalization of formulae found in [60] for the
superpositions of coherent states (m = 0) and in [66] for m arbitrary (but in the special case
of ck = 1 and |αk| = const with uniformly distributed phases of αk).

The function fm(x) = exp(−2x)Lm(4x) is shown in figure 1. One can see that it has a
rather rich structure if m � 1, and it is interesting to study how this structure influences the
decoherence time. It is worth mentioning a significant difference in the ‘effective width’ of
the function fm(x) in the cases m = 0 and m � 1: while f0(x) rapidly goes to zero for x > 1,
for m � 1 this occurs only if x > m. Consequently, function (11) decreases exponentially in
the ‘classically forbidden region’ |z|2 > m, where the energy of oscillator exceeds the value
mh̄ω (remember that |z|2 = (q2 + p2)/2).

3. Time evolution of the Wigner function

We assume that an irreversible evolution of the quantum state in the interaction picture (where
rapid oscillations at the oscillator eigenfrequency are eliminated) is governed by the standard
master equation [73, 74] describing the influence of a phase-insensitive (in particular, thermal)
reservoir:

∂ρ

∂t
= ην1

(
2âρâ† − â†âρ − ρâ†â

)
+ ην2

(
2â†ρâ − ââ†ρ − ρââ†) . (13)

Here, â and â† are the usual boson annihilation and creation operators, respectively. The
positive parameter η is proportional to the coupling coefficient between the oscillator (or the
chosen field mode) and the reservoir. The parameters ν1 and ν2 can be interpreted, e.g.,
as the numbers of atoms of the reservoir (resonantly interacting with the oscillator) in the
fundamental and excited states, respectively. The case ν1 > ν2 describes a phase-insensitive
attenuator, while the case ν2 > ν1 corresponds to a phase-insensitive amplifier.
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The time-dependent Wigner function W(q, p, t) obeys the Fokker–Planck equation which
follows immediately from (13)

∂W

∂t
= ∂

∂q
(γ qW) +

∂

∂p
(γpW) + D

(
∂2W

∂q2
+

∂2W

∂p2

)
, (14)

where

γ = ησν0, D = 1

2
ην0 = γ

2σ
, ν0 = ν1 + ν2, σ = ν1 − ν2

ν1 + ν2
. (15)

The asymmetry parameter σ can vary in the interval [−1, 1], being positive for attenuators
and negative for amplifiers. Introducing the reservoir temperature T by means of the relation
ν2/ν1 = exp(−�E/κT ) (where �E can be interpreted as the energy difference between the
excited and ground levels of atoms in the reservoir and κ is the Boltzmann constant), one can
write σ = tanh(�E/(2κT )).

The solution to equation (14) can be written as

F(z; t) =
∫

K(z; t |z′, 0)F (z′; 0) d2z′, (16)

where the propagator K(z; t |z′; 0) can be calculated by means of different methods [4, 75].
Transforming its explicit form given in [4, 76] from (q, p) to z variables (and taking into
account that dq dp = 2d2z), we obtain

K(z; t |z′; 0) = 2

πτ(t)
exp

(
− 2

τ(t)
|z − G(t)z′|2

)
, (17)

where

G(t) ≡ exp(−γ t) = √
1 − στ, (18)

τ(t) ≡ [1 − G2(t)]/σ, t (τ ) ≡ −(2γ )−1 ln(1 − στ). (19)

Note that τ(t) � 0 independently of the sign of parameter σ . In the limit t → 0, we have

τ ≈ 2ην0t = 4Dt = 2γ t/σ,

so the parameter τ does not depend on σ (i.e., on the effective temperature) if the diffusion
coefficient D is fixed. However, for the fixed damping coefficient γ the usual time t can be
much less than τ if |σ | 	 1 (i.e., in the high-temperature case). For attenuators we have
G(t) � 1 and for amplifiers G(t) � 1.

If σ > 0 (a thermal bath with non-negative temperature), then G(t) → 0 for t → ∞, so
that K(z;∞|z′; 0) does not depend on z′. This means that any initial Wigner function goes
asymptotically to the equilibrium Wigner function:

Feq(z) = (2σ/π) exp(−2σ |z|2). (20)

Consequently, all individual features of function (7), including its ‘fine structure’ shown in
figure 1, disappear for t � tth = γ −1. Thus, tth can be called the thermalization time. This
time does not depend on the initial quantum state.

However, there are other time scales, of the order of tth/|αk|2 	 tth, which correspond
to the process of decoherence, i.e., a fast transformation of the initial pure quantum state to
a classical mixture and disappearance of quantum interference effects. These scales are very
sensitive to the initial state.

Applying the propagator (17) to the initial function (7) with Fg(z) given by (11) and using
the formula (which is a ‘complex’ version of the formula derived in [67])∫

d2z exp(−g|z|2 + ξz + ηz∗)Ln(a|z|2) = π(g − a)n

gn+1
exp

(
ξη

g

)
Ln

(
aξη

g(g − a)

)
, (21)
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we obtain after some algebra the explicit form of the time-dependent Wigner function for the
initial superposition of displaced number states:

F(z; t) = 2(−1)mrm

Aπsm+1

N∑
j,k=1

cj c
∗
kLm

(
4

rs
[Gz − γjk][Gz − χjk]∗

)

× exp

[
−2

s
|z|2 − r

s
αjα

∗
k +

2G

s

(
zα∗

k + z∗αj

) − 1

2
(|αj |2 + |αk|2)

]
, (22)

where

γjk = 1
2 (rαj + sαk), χjk = 1

2 (sαj + rαk), (23)

r(t) = G2 − τ ≡ 1 − τ(1 + σ), s(t) = G2 + τ ≡ 1 + τ(1 − σ). (24)

An equivalent (but less compact) expression was obtained in [24] for displaced number states
uniformly distributed along the circle |αk| = const with equal coefficients ck = 1.

4. Decoherence times

To define and calculate the decoherence time, we need some function C(t) of a single time
variable, which could serve as an adequate simple indicator of the ‘degree of coherence’ of
the quantum state. Let us normalize such a function by the condition C(0) = 1, supposing that
C(t) � 1 for t > 0. There are at least two simple possibilities to define the decoherence time.
One can choose some value η < 1 to define the ‘η-decoherence’ time tη as a solution to the
equation

C(tη) = η. (25)

Another possibility is to define the ‘initial decoherence time’ (IDT) tin simply as the inverse
time derivative of C(t) at t = 0:

t−1
in = |dC/dt |t=0. (26)

A technical advantage of definition (26) is that the initial derivative of function C can be found
in some cases without any knowledge of C(t) for t > 0 (see illustrations in the following
subsections). In the known examples related to the decoherence of simple initial superpositions
of two coherent states, both the definitions were, in fact, equivalent, because in these examples
the functions C(t) were close to exponential functions. In this specific case, each of the two
times can be reduced to another by simple rescaling: tin = tη=1/e, tη = tin ln(1/η). One of the
goals of this paper is to show that for superpositions with more than two components N or with
a high ‘level of excitation’ m of each component the definition (26) ceases to characterize the
decoherence process correctly, so that one should use the definition (25) with an appropriate
choice of the ‘tolerant coherence level’ η. In the following subsections, we consider and
compare two simple functions C: the quantum purity and the height of the central interference
peak.

4.1. The quantum purity as an indicator of decoherence

One of the most frequently used simple indicators of coherence is the quantum purity
µ ≡ Tr(ρ̂2) [14, 21, 77, 78], which can be calculated by means of the formula

µ = π

∫
F 2(z) d2z. (27)



13962 V V Dodonov and L A de Souza

The initial value of the purity is µ(0) = 1, and for t � tth it goes to the equilibrium
value µeq = σ (if σ > 0). But before this happens, it rapidly (during the time of the order of
tth/|αk|2) goes to the intermediate value

µint =
N∑

k=1

d2
k , (28)

where

dk = |ck|2/
N∑

k=1

|ck|2,
N∑

k=1

dk = 1. (29)

Formula (28) corresponds to the purity of a mixture of N orthogonal pure states. In our
case it is approximate, as a matter of fact, because the components of the superposition (4)
are not exactly orthogonal, but the corrections are exponentially small, of the order of
min{exp(−|αk|2), exp(−|αk − αj |2)} (k 
= j), if |αk| � 1. The purity of each component
is approximately preserved at the time scales of the order of tth/|αk|2, because at these time
scales we can neglect the change of functions s(τ ) and r(τ ) in equation (22), replacing them
by the unit values.

The integral (27) with function (22) can be calculated only for m = 0 (superpositions of
coherent states at t = 0). Using formula (21) with n = 0, we obtain

µ =
N∑

j,k,m,n=1

gjkgmn

A2s
exp

[
τ

s
(αj − αm)(αn − αk)

∗
]
, (30)

where

gjk = cj c
∗
k exp

[
αjα

∗
k − 1

2 (|αj |2 + |αk|2)
]
. (31)

Since we suppose that |αj − αk| � 1 for j 
= k, only the terms with j = k and m = n

give significant contributions to the sum in equation (30) for t 	 tth. Thus, we can simplify
equation (30) as (here we put s = 1)

µ =
N∑

k,m=1

dkdm exp(−τ |αk − αm|2), τ 	 1, (32)

where the coefficients dk were defined in equation (29). Equation (32) clearly shows that for
superpositions of more than two coherent (mesoscopic) states, there can exist more than one
decoherence times.

For symmetrical superpositions obeying conditions (9), equation (32) takes the form

µ = 2
N/2∑

k,m=1

d2kd2m[exp(−τ |α2k − α2m|2) + exp(−τ |α2k + α2m|2)], (33)

and for τ 	 1 we obtain

µ = 1 − 4τ

N/2∑
k=1

d2k|α2k|2 + O(τ 2), (34)

so that the ‘initial decoherence time’ (26) is given by the relations

τ−1
in = |dµ/dτ |τ=0 = 4

N/2∑
k=1

d2k|α2k|2. (35)
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The right-hand side of (35) is proportional to the mean number of quanta 〈â†â〉 in the initial
state. It can be interpreted also as twice the mean square radius of the superposition in the
complex z-plane. The advantage of the IDT based on the quantum purity is that it can be
calculated for an arbitrary initial state, even when integrals (16) and (27) cannot be calculated
analytically. Indeed, an immediate consequence of equation (13) is the formula [67, 77, 78]

µ̇|t=0 = 2Tr(ρ̂ ˆ̇ρ)t=0 = −2ην0(1 − σ + 2[〈â†â〉 − |〈â〉|2]t=0). (36)

For the initial superpositions of displaced number states, the average values at t = 0 can be
calculated for any m with the aid of the known relations

âD̂(α) = D̂(α)(â + α), â†D̂(α) = D̂(α)(â† + α∗),

â|n〉 = √
n|n − 1〉, â†|n〉 =

√
n + 1|n + 1〉,

D̂†(αk)D̂(αj ) = D̂(αj − αk) exp[i Im(α∗
kαj )],

together with formulae for the matrix elements 〈m|D̂(γ )|n〉 ≡ D
(γ )
mn [79]

D(γ )
mn =

⎧⎪⎪⎨
⎪⎪⎩

√
m!

n!
(−γ ∗)n−m e−|γ |2/2L(n−m)

m (|γ |2), n � m,√
n!

m!
γ m−n e−|γ |2/2L(m−n)

n (|γ |2), m � n.

It can be shown [67] that |exp(−x/2)L(k)
m (x)| 	 1 for k = 0, 1 and x � 1, independently of

the value of index m (even if m ∼ x or m � x). Therefore, calculating double sums for the
average values, we retain only the diagonal terms with αj = αk . This results in the following
generalization of formula (35) under the conditions (9):

τ−1
in ≈ 2m + 4

N/2∑
k=1

d2k|α2k|2. (37)

The neglected terms show some oscillating behavior as a function of m if m > |α1|2. But the
maximal amplitude of these oscillations is of the order of |α|4/3 if m ∼ |α|2, as was shown
in [67]. Consequently, these oscillations do not change the IDT significantly.

However, the IDT cannot be a universal measure of the rate of decoherence, because τin

can be made very small simply by increasing the greatest value |αN |2, without changing the
values of all other coefficients, even if dN 	 dk with k 
= N . Obviously, the last member
of the superposition is quite insignificant in this case, and nothing really happens with the
quantum state after the time τin. This is illustrated in figure 3.

The ‘final decoherence time’ (FDT) τf can be defined as the time when the function µ(t)

becomes close to the value (28), for example, as the solution of equation

[µ(τf ) − µint]/µint = ε, (38)

where ε 	 1 is some fixed small number and µint is given by formula (28). Requiring that
τf = τin for N = 2 and m = 0 (i.e., superpositions of two coherent states), we obtain the
value ε = e−2 ≈ 0.135. However, for N � 1 or m > 0 and the same value of ε we have
τf � τin, as shown in the examples of section 5.

4.2. The decay rate of the central interference peak

Another good indicator of decoherence, at least for symmetrical superpositions satisfying the
conditions (9), is the height of the central interference peak at z = 0 [67, 69, 70]. As was
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shown in section 2, the initial height F(0, 0) can be N times bigger than the height of any
constituent peak F(αj , 0) (if all coefficients cj have approximately equal values). Moreover,
the value F(0, 0) does not depend on the positions αk of the centers of constituent peaks. It is
reasonable to use the normalized height, dividing F(0, τ ) by the initial value. Thus, we arrive
at the following indicator of coherence:

f (τ) = F(z = 0; τ)

F (z = 0; 0)
. (39)

For symmetrical superpositions of displaced number states, whose parameters satisfy the
conditions (9), we obtain the following explicit formula for the normalized height of the
central interference peak:

f (τ) = 2rm

sm+1

N/2∑
k=1

d2k exp

[
−2τ

s
|α2k|2

]
Lm

(
−4τ 2

rs
|α2k|2

)
, (40)

where the coefficients d2k were defined in (29) and functions s(τ ) and r(τ ) were defined
in (24). Equation (40) shows that the evolution of the height of the central interference peak
is non-exponential in a generic case of more than two components of the superpositions. For
this reason, it is difficult (or impossible) to introduce a unique ‘decoherence time’ in a generic
case. The IDT τin gives only the time of disappearance of the interference between the most
distant components of the superposition. But this parameter is insufficient to characterize the
whole process, especially if N � 1 or dN 	 1. The interference pattern disappears totally
only after the ‘final decoherence time’ τf ∼ |α1|−2 (provided d1 is not much smaller than
the other coefficients dk), which can be much greater than τin. In particular, increasing the
‘size’ of the superposition state by increasing |αN | (or adding new components with bigger
displacement parameters) does not affect the value of τf .

Looking at the linear term (with respect to τ ) of the Taylor expansion

f (t) ≈ 1 − τ

[
2m + 1 − σ + 4

N/2∑
k=1

d2k|α2k|2
]

+ τ 2

[
4

N/2∑
k=1

d2k|α2k|2(|α2k|2 + 4m + 2 − 2σ) + 2m2 + 2m − 4mσ + (1 − σ)2

]
, (41)

we see that the initial ‘f -decoherence time’, defined as τ−1
in = |df/dτ |τ=0, coincides with the

‘µ-decoherence time’ (37) (where the term 1 − σ was neglected). As a matter of fact, this
coincidence takes place for arbitrary superpositions, provided they have a definite parity with
respect to the reflection x → −x. Indeed, the quantity ∂W/∂t |t=0 can be found directly from
the Fokker–Planck equation (14) without any knowledge of function W(q, p, t) for t > 0. On
the other hand, Wigner functions of pure quantum states with definite parity have a remarkable
property that their derivatives at the origin of the phase plane (q, p) are determined completely
by the mean values of powers and products of the canonical operators [80]. In particular,

1

W

∂2W

∂q2

∣∣∣∣
q=p=0

= −4〈p̂2〉, 1

W

∂2W

∂p2

∣∣∣∣
q=p=0

= −4〈q̂2〉. (42)

Putting these expressions on the right-hand side of equation (14) at t = 0 with account of (15)
and (18), we obtain the derivative df/dτ |τ=0 = σ − 〈p̂2〉 − 〈q̂2〉, which coincides exactly
with (36), due to the relations 〈p̂2〉 + 〈q̂2〉 = 2〈â†â〉 + 1 and 〈â〉 = 0.

We see that the IDT decreases with the increase in the parameter m. On the other hand, the
quadratic term in (41) indicates that by increasing m one slows down the decay of the function
f (τ). Consequently, the states with m > 0 can have bigger ‘final decoherence times’ than the
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states with m = 0. Such a behavior becomes especially clear for m � 1, since formula (41)
shows that the influence of parameter m is significant for m ∼ |α|2 � 1. In this case,
one can replace the Laguerre polynomial of the negative argument by the Hilb asymptotical
formula [72]

Lm(−x) ∼ exp(−x/2)I0(
√

4mx), (43)

where I0(z) is the modified Bessel function. Formula (43) holds uniformly with respect to x
(including small values) for m � 1. Then, equation (40) takes the form

f (τ) ≈ 2rm

sm+1

N/2∑
k=1

d2k exp

(
−2τ

rs
G2|α2k|2

)
I0

(
4τ |α2k|

√
m√

rs

)
. (44)

For τ 	 1 and m � 1, the ratio rm/sm+1 can be represented with a sufficient accuracy as
exp(−2mτ) (the terms of the order of mτ 2 in the argument of the exponential function can be
obviously neglected). On the other hand, if the argument of the Bessel function 4τ |α2k|

√
m is

significantly greater than unity (this just occurs in the regime of ‘final decoherence’, when the
function f (τ) must be small), then one can use the asymptotical formula for the modified Bessel
function I0(x) ≈ (2πx)−1/2 exp(x). Moreover, we can still put s(τ ) = r(τ ) = G(τ) = 1 in
the arguments of the exponential and Bessel function (corrections are of the order |α|2τ 2 	 1,
if |α|2τ ∼ 1). Then, (44) can be written as

f (τ) ≈
N/2∑
k=1

d2k exp[−2τ(|αk| − √
m)2]

(2πτ |αk|
√

m)1/2
. (45)

Numerical tests show no visible difference between the functions (44) and (45) for |α|2τ > 2
and m/|α|2 > 1/3. According to equation (45), the rate of decreasing the central interference
peak becomes essentially slow if one of the values of |αk| is close to

√
m. For such

superpositions, the final decoherence time can be much bigger than τin. These features
are illustrated in section 5.

An approximate formula for the time-dependent height of the central interference peak
for a general superposition (4) can be found, if one puts z = 0 in equations (16) and (17)
and takes into account only those terms in the double sum which give α

(+)
jk = 0. For the

states satisfying the conditions (9) this means that α
(−)
jk = αj . Thus, we obtain (changing the

integration variable z′ = y
√

τ/G
√

2) the following expression for the normalized height:

f (τ) =
N/2∑
k=1

2d2k

πG2Fg(0)
Re

{∫
d2yFg

(
y
√

τ

G
√

2

)
exp

[
−|y|2 +

√
2τ

G

(
α2ky

∗ − α∗
2ky

)]}
, (46)

where the coefficients d2k were defined in (29). The main contribution to the integrals comes
from the domain |y| < Y ∼ 1 (say, Y = 3, since e−9 ≈ 10−4 	 1). But studying the
decoherence process we are interested in the time scale τ 	 1. Consequently, confining
ourselves by symmetrical fiducial states, whose Wigner functions have an extremum at point
z = 0, we can replace the exact function Fg(z) under the integral by its Gaussian approximation

Fg(z) ≈ Fg(0) exp(−4σp[Re(z)]2 − 4σq[Im(z)]2), |z| 	 1, (47)

where σq and σp are the coordinate and momentum variances, according to formula (42),
which is totally applicable in the case concerned (we choose the axes in the complex z-plane
in such a way that the cross term Re(z)Im(z) disappears; also we remember that 〈q̂〉 = 〈p̂〉 = 0
for symmetrical states). Then the integrals on the right-hand side of (46) can be calculated
analytically and we obtain

f (τ) =
N/2∑
k=1

2d2k√
B(τ)

exp

(
− 2

B

{|α2k|2τ [G2 + τ(σq + σp)] − Re
(
α2

2k

)
τ 2(σq − σp)

})
, (48)
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where

B(τ) = [G2(τ ) + 2σqτ ][G2(τ ) + 2σpτ ]. (49)

Calculating the linear term of the Taylor expansion of function f (τ) given by (48), we obtain
the formula for the IDT

τ−1
in = σq + σp − σ + 4

N/2∑
k=1

d2k|α2k|2 (50)

which clearly shows that both the increase in the effective size of the superposition (the
last sum on the right-hand side) or the coefficients σq and σp result in diminishing the initial
decoherence time (due to the increase in the total energy of the initial state; note that σq + σp �
1 as a consequence of the uncertainty relation σqσp � 1/4). But quadratic terms (with respect
to τ ) in the argument of exponential function in (48) also clearly show that the rate of decay
of the function f (τ) can be significantly accelerated or slowed down for τ > τin, depending
on signs of the difference σq − σp and the quantity Re

(
α2

2k

)
. Consequently, the dependence

of the final decoherence time on the parameters σq, σp and α2k can be quite complicated, so
that for some combinations of these parameters the FDT can be much bigger than for others.
This can occur, for example, in the case of superpositions of squeezed states, for which (47)
is the exact Wigner function of the fiducial squeezed vacuum state. However, we shall not
investigate this special case here.

The Gaussian approximation of the Wigner function (11) of the Fock state reads
Fm(z) ≈ Fm(0) exp[−2|z|2(1 + 2m)]. It is good for |z| 	 √

Z1/2, where Z1 is the first zero
of the Laguerre polynomial Lm(x). In terms of the variable τ , this means that formula (48)
can be used under the condition τ 	 Z1/2. For m � 1 we have Z1 ≈ 2/m, so that the
domain of validity of the Gaussian approximation for the time-dependent height of the central
interference peak is mτ 	 1, which implies the restriction m 	 |α1|2, if one takes into
account that τf ∼ |α1|−2, as shown in the following section. Therefore, formula (45) cannot
be derived from the Gaussian approximation.

5. Examples

To illustrate general results of the preceding sections, let us consider the symmetrical
superpositions of an even number N of displaced Fock states with equal weights dk = 1/N ,
uniformly distributed along the straight line,

α2k−1 = a(2k − 1), k = 1, 2, . . . , N/2,

so that 2a � 1 is the constant distance between the neighboring components; the maximal
displacement parameter is |αN | = a(N − 1). Calculating the initial decoherence time for
m = 0 and σ = 1, we obtain, according to equation (37),

τ−1
in = 2a2

3
(N2 − 1) = 2

3
α2

N

N + 1

N − 1
=

⎧⎨
⎩

2α2, N = 2
2

3
α2

N, N � 1.

Consequently, if the maximal displacement |αN | is fixed, then the initial decoherence time
does not depend on the number of components N (for N � 1).

But this number influences the final decoherence time (FDT). Noting that the height of the
central interference peak is N times bigger than the height of any ‘constituent’ peak (centered
at z = αk) at τ = 0, we can define the FDT τf as the solution of equation

f (τf ) = 1/(Nβ), β � 1, (51)
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i.e., at the instant when the central interference peak becomes β times smaller than the initial
height of constituent peaks. This definition seems reasonable, because hardly one can say that
the interference has disappeared, if the interference peaks remain higher than the constituent
ones. The choice of β is a matter of convenience. It can be fixed, e.g., by the requirement that
for the simplest superposition of only two coherent states (when f (τ) is a simple exponential
function for σ = 1) the ‘initial’ and ‘final’ decoherence times coincide. Then, β = e/2 ≈ 1.36.

Comparing equations (40) and (51) and taking into account that the terms with k > 1
decrease much faster than the first one, one can see that the final decoherence time can be
found from the equation

2rm

sm+1
exp

[
−2τ

s
|α1|2

]
Lm

(
−4τ 2

rs
|α1|2

)
= 1

β
(52)

which does not contain N. For m = 0, we obtain a quadratic dependence of the final
decoherence time on the number of components in the superposition (if τin is fixed):

τ
(0)
f (N) = ln(2β)

2|α1|2 = 1

3
N2 ln(2β)τin, N � 1. (53)

Numerical calculations show that the final decoherence time increases with the increase of m,
and the maximal value of τf is achieved at m = |α1|2 (if β > 2):

τ
(m=|α1|2)
f ≈ β2

2π |α1|2 = β2

3π
N2τin, N � 1. (54)

In all illustrations of this section, we consider the case σ = 1 (zero temperature of the
reservoir), when s ≡ 1 and r = 1 − 2τ . It can be shown that the ‘reduced’ FDT in the τ -scale
τf almost does not depend on the parameter σ , including its sign. An account of the concrete
value of σ gives corrections δτf ∼ |γα4|−1, which can be neglected. In the usual t-scale,
the decoherence time decreases with the decrease of parameter σ (increase of the absolute
temperature T), roughly speaking, as tf ∼ τf σ/γ (i.e., as T −1 in the high-temperature limit),
according to equation (19) with τ 	 1. However, tf remains finite even for an infinite
temperature, if the diffusion coefficient D, defined in equation (15), is fixed. The initial
decoherence time almost does not depend on m if m � |α1|2 	 |αN |2. We do not consider the
values m � |α1|2, because they result in a strong overlap between the initial Wigner functions
of the constituent components.

Formula (32) for the purity can be rewritten in the case under study as (for m = 0)

µ = 1

N
+

2

N2

N−1∑
k=1

(N − k) exp(−4τa2k2), τ 	 1, (55)

so that equation (38) assumes the form

N−1∑
k=1

(1 − k/N) exp(−4τa2k2) = ε/2. (56)

Again only the first term on the left-hand side should be taken into account. Consequently,

τf µ = ln(2/ε)/a2 = 1
6τinN

2 ln(2/ε), N � 1. (57)

To get further insight in the decoherence dynamics of multicomponent superpositions,
let us consider the superpositions of four states distributed along a straight line. Figure 2
illustrates the case of equal weights of all components. In the left plot, we show the section
Im(z) = 0 of the Wigner function F(z) (22) with m = 0 (an initial superposition of coherent
states), taken at three instants of time: τ = 0, τ = τin (calculated according to equation (35)),
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Figure 2. Left: the section Im(z) = 0 of the Wigner function F(z) (22) of the superposition of four
coherent states (m = 0) with equal weights, located initially on the line at the points α1 = −α2 = 5
and α3 = −α4 = 15, for three instants of time: τ = 0 (the upper line), τ = τin = 0.004 (the
middle dotted line), and τ = τf = 0.02 (the lower line), which corresponds to the threshold
parameter β = e/2. Right: the same for the superposition of four states distributed on the line
(α1 = −α2 = 4, α3 = −α4 = 12) with equal weights, but different values of m = 0 (dotted line)
and m = α2

1 = 16 (solid line), at the time instant τ = 0.04.

and τ = τf (calculated according to equation (51) with β = e/2). The initial ‘constituent’
peaks are located at the points z = ±5 and z = ±15, whereas the initial peaks at the points
z = 0 and z = 10 are due to the interference. The initial height of the peak at z = 5 is three
times bigger than that at z = 15 due to the accidental coincidence with the interference peak
formed by the pair of states with α2 = −5 and α3 = 15. Since F(z) = F(−z) for the states
concerned, we do not show the section of the Wigner function on the negative semi-axis. We
see that although the height of the central interference peak is twice smaller than the initial
one at the instant τin, it is still bigger than the heights of constituent peaks, so that hardly one
can believe that an essential decoherence occurs at this instant of time. Only after time τf

(which is five times bigger than τin in the example considered), the heights of interference
peaks become smaller than those of the constituent ones.

The right plot of figure 2 illustrates the difference between superpositions of the coherent
and displaced number states with big excitation numbers. The chosen instant of time τ = 0.04
is 6.4 times bigger than the initial decoherence time of the superpositions of coherent states,
calculated according to equation (35), but it is close to the final decoherence time (FDT)
τ

(max)
f of the most robust states with m = |α1|2, calculated according to (54) (for β = 2). We

see that the interference peaks of the Gaussian superposition are almost twice lower than the
constituent peaks. At the same instant of time, the interference peaks of the highly excited
non-Gaussian state are almost twice higher than the constituent ones.

To study the influence of weights of different components of the superposition on
the decoherence time, we have considered superpositions of four coherent states with
α1 = −α2, α3 = −α4, d1 = d2 = x/2 and d3 = d4 = (1 − x)/2. The initial decoherence
time (35) was maintained fixed by imposing the constraint

x|α1|2 + (1 − x)|α3|2 = (2τin)
−1 = const. (58)

In figure 3, we compare the functions L = −ln[µ(τ)] and F = −ln[f (τ)] for different values
of the weight x and fixed values α1 = 5 and τ−1

in = 450 (so that α3 = 15 for x = 0). We see
that the purity becomes close to the constant asymptotical value µ∞ = [x2 + (1 − x)2]/2 after
the time interval which is significantly greater than the IDT τin, even for small values of x. The
difference between the ‘initial’ and ‘final’ decoherence times is even more pronounced, if one
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Figure 3. The inverse logarithm of purity L = −ln(µ) (at the left) and the inverse logarithm
of the normalized height of the central interference peak F = −ln(f ) (at the right) versus the
dimensionless time τ for the superpositions of four coherent states on the line with different weights
of ‘internal’ components x. The fixed parameters are the initial decoherence time τin = 1/450 and
the initial position of the first component α1 = 5: see equation (58).

considers the time dependence of the inverse logarithm of the normalized height of the central
interference peak F = −ln(f ). Although all curves start with the same initial slope at τ = 0,
corresponding to the initial decoherence time τin, this parameter has nothing in common with
the real decoherence time, except for the case of very small weight x of ‘internal’ components
of the superposition (less than 0.1, if the threshold parameter β in equation (53) is greater
than e/2).

6. A long-time behavior of the Wigner function in the case of amplification

If parameter σ defined in (15) is negative, then we have the case of a phase-insensitive
amplifier [81]. The evolution of nonclassical states and their statistical properties in this case
was considered by several authors [82]. Time-dependent Wigner functions and other quasi-
distributions for some initial states were calculated in [83, 84]. In particular, Agarwal and
Tara [83] showed how phase-insensitive amplifiers can be used to measure different quantum
quasi-distribution functions. The phase-insensitive amplification of two-component quantum
superpositions of the form (1) was considered in [20, 85–87]. The evolution of the Wigner
function for initial superpositions of displaced Fock states was studied in [88]. Here we give
new results for initial superpositions of a more general form (4). Namely, we consider the
asymptotical behavior of the Wigner function (22) for t → ∞ in the case of amplification.

If 0 > σ > −1, then asymptotically

G = exp(|γ |t) � 1, τ ≈ G2/|σ |,
r ≈ −G2(1 − |σ |)/|σ | < 0, s ≈ G2(|σ | + 1)/|σ |.

Consequently, one can rewrite function (22) for τ � 1 as

F(z; t) = G−2(τ )F̃ (z̃), z̃ = z/G(t), (59)

where

F̃ (z̃) = 2|σ |(1 − |σ |)m
Aπ(1 + |σ |)m+1

N∑
j,k=1

cj c
∗
kLm

(
− 4

1 − σ 2
Z

(+)
jk Z

(−)∗
jk

)
exp

[
−1

2
(|αj |2 + |αk|2)

− 2|σ |
1 + |σ | |z̃|2 +

1 − |σ |
1 + |σ | αjα

∗
k +

2|σ |
1 + |σ |

(
z̃α∗

k + z̃∗αj

)]
, (60)
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Figure 4. Left: the section Im(z) = 0 of the scaled Wigner function F̃ (z̃) (60) versus the scaled
argument z̃ (tildes over z and F are omitted) in the case of amplification (σ = −0.9) of the
initial ‘constructive’ superposition of two displaced number states with c1 = c2 = 1/

√
2 and

α1 = −α2 = 4, for different values of m = 0, 1, 10, 16. A solid line for m = 16 has a strong
peak at the center, whereas the dotted line for m = 10 has a lower double peak at the center.
Right: the same for the initial ‘destructive’ superposition of two displaced number states with
c1 = −c2 = 1/

√
2 and α1 = −α2 = 4, for two values of m = 10, 16. A solid line for m = 16

shows no peak at the center.

Z
(±)
jk = |σ |[z̃ − 1

2 (αj + αk)] ± 1
2 (αj − αk). (61)

We see that the asymptotical Wigner function takes a ‘frozen’ form in terms of the scaled
variable z̃. The time-dependent factor G−2(τ ) in equation (59) is responsible for the correct
normalization, due to the relation d2z = G2d2z̃. On the other hand, since the function F 2(z)

decays with time as G−4(τ ), the quantum purity (27) decays as G−2(τ ) = exp(−2|γ |t).
Nonetheless, the contribution of the off-diagonal terms in (60) cannot be neglected when

τ � 1, because the absolute values of arguments of the Laguerre polynomials on the right-hand
side are much bigger than the absolute values of arguments of the corresponding exponential
functions with the same values of variable z̃ if σ is close to −1. This fact can be interpreted
as a ‘revival’ of interference effects (the asymptotical Wigner function depends on the phases
of coefficients cj , and not on their absolute values only). It is clearly seen if one compares
two plots of figure 4, which show the sections of the frozen Wigner function F̃ (z̃) with z̃ real
for even and odd initial superpositions of two displaced number states with different values
of parameter m. For m = 0 and m = 1, the curves for even and odd initial states practically
coincide, so these values of m are not considered in the right plot. But when m is close to |α|2,
the difference becomes striking. For example, the central interference peak of the even state
with m = 16 is totally destroyed in the case of an odd superposition.

However, this interference has a classical nature, not a quantum one. In the most distinct
form, this phenomenon can be seen in the limit case of an ideal quantum amplifier characterized
by the parameter σ = −1 (this value corresponds to the ‘negative zero temperature’). Then,
τ ≈ G2 and s ≈ 2τ , but r ≡ 1, so that function (22) has the asymptotical form:

F(z; τ) = 2(−1)m

Aπ(2τ)m+1

N∑
j,k=1

cj c
∗
kLm(2τ [z̃ − αk][z̃ − αj ]∗)

× exp[−|z̃|2 + z̃α∗
k + z̃∗αj − (|αj |2 + |αk|2)/2]. (62)

Under the condition

2τ |(z̃ − αk)(z̃ − αj )
∗| � m2, (63)
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one can replace the Laguerre polynomial by the highest-power term in the sum (12), writing
Lm(x) ≈ (−x)m/m!. Then, function (62) becomes

F(z; τ) = (Aπτm!)−1
N∑

j,k=1

cj c
∗
k [(z̃ − αk)(z̃ − αj )

∗]m

× exp[−|z̃|2 + z̃α∗
k + z̃∗αj − (|αj |2 + |αk|2)/2]. (64)

It is remarkable that the right-hand side of equation (64) can be represented in a factorized
form as the modulus squared of some ‘Wigner wavefunction’:

F(z; τ) = �(z; τ)�∗(z, τ ), (65)

�(z; τ) = (Aπτm!)−1/2
N∑

j=1

cj (z̃ − αj )
∗m exp

[− 1
2 |z̃ − αj |2 + i Im(z̃∗αj )

]
. (66)

Equation (65) shows that the asymptotical Wigner function is positive at all points of the phase
space. This means that the asymptotical state is totally classical.1 On the other hand, equation
(66) shows that this classical state is very sensitive to the relative phases of coefficients cj . It
is worth mentioning that function (66) ‘remembers’ not only the exact values of coefficients
of the initial quantum superposition (4), but also it preserves some memory of the initial form
of the ‘constituent’ wave packets through the power m of pre-exponential factors.

7. Conclusion

The main results of the paper are as follows. We have obtained a simple formula (7) for the
Wigner function of a superposition of an arbitrary number of states generated by displacement
operators from an arbitrary given ‘fiducial’ state, in terms of the Wigner function of this fiducial
state. We have obtained an exact formula (22) describing the evolution of the Wigner function
of a superposition of an arbitrary number of displaced number states with the same excitation
number m, governed by the standard master equation (13), both in the case of a relaxation to
a thermal state with an arbitrary temperature and in the case of a phase-insensitive quantum
amplifier.

We compared two definitions of the decoherence time: one based on the time evolution of
the quantum purity (µ-decoherence time) and another based on the time evolution of the central
interference peak (f -decoherence time). We showed that both approaches give identical
results for the ‘initial decoherence time’ (IDT) in the case of symmetrical superpositions. We
demonstrated that the IDT can be considered as a reliable characteristic of the decoherence
process only in the simplest case of superpositions of two coherent states. In more involved
cases, such as superpositions of more than two well-separated ‘constituent’ packets or packets
with some ‘internal structure’ (represented by displaced number states), the concept of ‘final
decoherence time’ (FDT) was introduced. The ‘f -approach’ to calculating the FDT is much
more simple and transparent than the ‘µ-approach’, because the latter can be used, as a matter
of fact, only for superpositions of initial coherent states. For more involved superpositions, the
calculation of quantum purity at any instant of time becomes an extremely difficult problem,
even if the explicit expression for the Wigner function is known. In contrast, the analysis of

1 There is no contradiction with the results of [85], according to which any initial nonclassical state maintains some
degree of nonclassicality for any time in the process of amplification: simply this degree of nonclassicality becomes
asymptotically exponentially small, because the Wigner function can assume small negative values only in domains
where inequality (63) is not fulfilled, and the total area of these domains goes asymptotically to zero.
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the time evolution of the central interference peak can be easily performed for any value of
the time variable and for a rather arbitrary (symmetrical) fiducial state |g〉, according to the
approximate formula (48). It was shown that although the µ-FDT and f -FDT do not coincide
in a generic case, their qualitative behavior is similar. Both the times increase significantly
(for several times or even by orders of magnitude), if one increases the number of constituent
states N or the excitation number m (in the case of displaced number states), maintaining
the value of the IDT. Therefore, more involved superpositions can be more robust against the
decoherence than simple superpositions of two coherent states (Gaussian packets). Finally, we
have shown how initial quantum superpositions are transformed into classical superpositions
in the case of phase-insensitive amplification.

We did not touch many interesting subjects, such as the decoherence caused by different
types of reservoirs (e.g., phase-sensitive ones or those describing the phase damping), the
decoherence in systems with many degrees of freedom (modes), relations between the purity,
height of interference peak of the Wigner function and the evolution of the off-diagonal matrix
elements of the statistical operator in different bases (e.g., in the discrete Fock basis) and so
on. The related results will be reported elsewhere.
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[39] Recamier J, Castaños O, Jáuregui R and Frank A 2000 Phys. Rev. A 61 063808
[40] Dunningham J A and Burnett K 2001 J. Mod. Opt. 48 1837
[41] Huyet G, Franke-Arnold S and Barnett S M 2001 Phys. Rev. A 63 043812
[42] Solano E, de Matos Filho R L and Zagury N 2001 Phys. Rev. Lett. 87 060402
[43] Wei L F, Liu Y-X and Nori F 2004 Phys. Rev. A 70 063801
[44] Huang Y P and Moore M G 2006 Phys. Rev. A 73 023606
[45] Dell’Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53
[46] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E and Meekhof D M 1998 J. Res. Natl Inst. Stand.

Technol. 103 259
Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
Ben-Kish A et al 2003 Phys. Rev. Lett. 90 037902
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